
Assembly and Integration Case Study: Enterprise Patch Management 1
ID: 206-BSI | Version: 5 | Date: 11/14/08 9:17:27 AM

Assembly and Integration Case Study: Enterprise Patch
Management
Steven Lavenhar, Cigital, Inc. [vita3]

Copyright © 2005-2007 Cigital, Inc.

2007-03-19 L3 / L, M, (E)4

Successfully managing the inevitable changes to an enterprise-wide application is a key aspect of assembly
and integration. “If these changes aren't properly managed across platforms and throughout each of the
stages of the software development life cycle, production failures, including security problems, can result.”
This document presents a case study of a Fortune 500 company where deficiencies in patch management left
many of the company’s servers vulnerable to cyber attack and subsequent infection by the Slammer worm.

Introduction
Enterprise-wide application development projects can be extremely difficult to manage. Changes to the
design specifications, documentation, and code are frequently requested by the development and testing
teams, as well as end users. If these changes aren't properly managed across platforms and throughout each
of the stages of the software development life cycle, production failures, including security problems, can
result.

This case study is about a Fortune 500 company that developed a portal based on Plumtree Corporate
Portal and several other commercial off-the-shelf (COTS) applications. Deficiencies in the management of
patches resulted in the introduction of a security vulnerability that used a buffer overflow to exploit a flaw in
Microsoft SQL Server 2000. This resulted in a large number of servers being infected by the Slammer worm.

The extensive use of third-party components makes it especially important to have an effective patch
management system, but patch management is a reactive approach to software security that cleans up
problems after they have been discovered in the field. It is always better to build security in, even though
patches will sometimes be necessary.

Portal Architecture
The system architecture of the portal was designed for high availability, scalability, and high performance.
The infrastructure was based on a classical n-tier design. All of the servers were configured for high
availability, with no hardware single points of failure. A security-policy-based DMZ was implemented
using redundant Cisco PIX firewalls. Load balancing of TCP/IP traffic across multiple Web servers was
provided by redundant Cisco LocalDirectors. Clustering of application and database servers was provided
by Windows 2000 Cluster Service using an active-passive configuration. Separate environments were
implemented for development, testing, staging, and production. In addition, a separate environment for
administration of the portal servers was utilized. The following applications were incorporated in the
development of the portal:

• Documentum 4.0

• Entrust GetAccess 7.0

• Microsoft Internet Information Services 5.0

• Microsoft SQL Server 2000

• Microsoft Windows 2000 Server

• Microsoft Windows 2000 Advanced Server

• Oracle 9.0

• Plumtree 4.5 Corporate Portal

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/197-BSI.html (Lavenhar, Steven)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/197-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Assembly and Integration Case Study: Enterprise Patch Management 2
ID: 206-BSI | Version: 5 | Date: 11/14/08 9:17:27 AM

Plumtree’s gadget architecture was utilized to allow the portal to provide access to a wide variety of
applications and content. Gadgets were used for integrating legacy data and access to COTS applications
such as SAP, Lotus Domino, Documentum, and custom programs. Single sign-on capabilities were provided
by GetAccess.

Configuration Management
Change, configuration, and metadata management are critical components of a comprehensive life-cycle
management strategy. Change management applications provide the tools for handling application and
system modifications through pre-defined processes, minimizing the impact of change on the organization.
Configuration and metadata management enables the sharing of information across components to allow
for impact analysis, component reuse, common definitions, standards enforcement, and governance. CCC/
Harvest was used as the solution for distributed change and configuration management.

The company developed a series of general controls that were applicable to all of it’s IT systems. They were
deemed essential best practices for ensuring the integrity, reliability, and quality of the systems. An intranet
document repository contained up-to-date versions of all key documentation, including the latest policies and
procedures. Shown below are some examples of the general controls that were in place:

• Antivirus policies

• Authentication/access controls

• Backup and recovery procedures

• Change management policies and procedures

• Coding standards and code review policies

• Disaster recovery/backup policies and procedures

• Firewall/VPN policies

• Incident management policies and procedures

• Internet usage policies

• Intrusion prevention and detection policies

• Laptop/workstation security

• Password policies

• Physical access security

• Security policies and procedures

• Service-level agreement policies

• Source code/document version control procedures

• Technical support policies and procedures

• Testing procedures and policies

• Version management/release management procedures

These general controls were standardized across the company, centrally administered, centrally controlled,
and repeatable. Many additional best practices were in use. For example, all changes made to assets within
the IT infrastructure were authorized, recorded, and reviewed before implementation. Adherence to the
general controls was regularly assessed through design walkthroughs, code reviews, internal audits, and
interviews to ensure that procedures and policies were properly followed. In addition to internal audits,
external auditors from a well-respected security consulting firm were employed to provide assurance that the
security controls in new systems were properly implemented. Also, periodic vulnerability assessments were
performed including port scanning, checking for outdated software patches, checking for missing antivirus
updates, and penetration tests.

Standard provisioning procedures were also in place to ensure that new users were assigned the correct
privileges. These profiles determined the default permissions assigned to a new user of a given type and also
enforced rules that prevented users from being assigned the wrong privileges. The principles of separation

Assembly and Integration Case Study: Enterprise Patch Management 3
ID: 206-BSI | Version: 5 | Date: 11/14/08 9:17:27 AM

of duties, least privilege, and user provisioning were strictly applied to all users of any system in use by the
organization.

Patch Management Problems and Security Vulnerabilities
The organization had developed and tested detailed standards documentation that addressed the specific
technologies in use by the corporation and established criteria by which compliance with the standards could
be measured. While the standards documentation provided clear descriptions of the procedures needed to
achieve compliance, there were some ambiguities with the process for achieving standards compliance. This
was particularly true in the area of patch management.

Managing patches is an issue of critical importance to system administrators and IT managers. There
have been several widely-publicized attacks and vulnerabilities related to patch management of Microsoft
software. On January 24, 2003, the portal production environment was widely attacked by the Slammer
Worm. The worm spread using a buffer overflow attack that exploited a flaw in Microsoft SQL Server 2000.

SQL Server 2000 has the ability to host multiple instances on a single physical machine. Each instance
operates as though it was a separate server. The multiple instances cannot all use the standard SQL Server
session port (TCP 1433). While the default instance listens on TCP port 1433, named instances of SQL
Server listen on any port assigned to them. The SQL Server Resolution Service, which operates on UDP port
1434, provides a way for clients to query for the appropriate network endpoints to use for a particular SQL
Server instance. Three security vulnerabilities resulted from flaws in the way this feature was implemented.
The first two flaws are buffer overflows. By sending a carefully crafted packet to the Resolution Service,
an attacker could cause portions of system memory (the heap in one case, the stack in the other) to be
overwritten. Overwriting it with random data would result in the failure of the SQL Server service;
overwriting it with carefully selected data would allow the attacker to run code in the security context of
the SQL Server service. The third vulnerability was a denial of service vulnerability. SQL uses a keep-alive
mechanism to distinguish between active and passive instances. It is possible to create a keep-alive packet
that, when sent to the Resolution Service, will cause SQL Server 2000 to respond with the same information.
An attacker who created such a packet, spoofed the source address so that it appeared to come from a SQL
Server 2000 system, and sent it to a neighboring SQL Server 2000 system, could cause the two systems to
enter a never-ending cycle of keep-alive packet exchanges. This would consume resources on both systems,

slowing performance considerably [Microsoft 200347].

Many organizations with proactive security patch management in place were not affected by these attacks,
because they acted on information that Microsoft made available in advance of the attack. Due to the
critical nature of the patch, it was deployed in the staging and production environments after a short pre-
deployment test. After the patch was deployed security tests were performed in the staging environment.
However, security tests were not performed in the production environment, which was a critical mistake.
Since the staging and production environments were mirrored, it was assumed that the two environments
were identical and that additional testing of the production environment was not necessary. However, there
were subtle differences in the two environments. Specifically, the group security policies were not exactly
identical, with the group policy in the production environment more restrictive. While the security patch was
successfully deployed in all of the SQL Server machines in the staging environment, the deployment failed
in the production environment due to the group security policy settings. The use of CCC/Harvest to deploy
the patches and installation scripts to the servers compounded the problem because CCC/Harvest was not
designed to provide the patch management functionality the company tried to implement.

Historically, Microsoft product teams have been free to develop their own technologies and engineering
processes. Architectural differences among Microsoft products can in some cases necessitate differences
in the way patches must be installed. A number of different technologies have been developed for
installing patches, each associated with one or more products. However, each has unique characteristics
that an administrator may need to be aware of in order to use it effectively. Each installer technology
used by Microsoft has a unique set of numeric codes that it uses to indicate whether the installation

47. #dsy206-BSI_ms03

#dsy206-BSI_ms03

Assembly and Integration Case Study: Enterprise Patch Management 4
ID: 206-BSI | Version: 5 | Date: 11/14/08 9:17:27 AM

completed successfully. Likewise, installer technologies vary in their use of log files that provide more
verbose diagnostic information. A best practice would be to establish a uniform set of return codes for
troubleshooting problems with patch installations, along with procedures for examining installation log files
for the patch installer program. However, this was not done because CCC/Harvest, which is a configuration
management tool, was misapplied by the company. It was not designed to support patch management.

At approximately 9:30 P.M. Pacific Time on January 24, 2003, the SQL Slammer worm caused a dramatic
increase in network traffic worldwide. A post-mortem analysis of the SQL Slammer worm shows that:

• The worm required roughly 10 minutes to spread worldwide, making it by far the fastest worm to date.

• In the early stages, the number of compromised hosts doubled in size every 8.5 seconds.

• At its peak, (achieved approximately three minutes after the worm was released), it scanned the net at
over 55 million IP addresses per second.

• It infected at least 75,000 servers and probably many more.

Included in this large number of infected servers was every SQL Server machine in the company’s
production environment. In contrast, the staging environment, where the security patch was properly
installed, was not affected.

Lessons Learned
This attack highlighted several important lessons about the nature of security vulnerabilities and patch
management:

• Having an accurate understanding of the configuration of every computer in your environment is an
important prerequisite for successful security patch management. Making assumptions, such as the
synchronicity of the group policy settings in the staging and production environments, can lead to
critical mistakes.

• Having an accurate understanding of every product and technology present in your environment is also
an important prerequisite for successful security patch management.

Using CCC/Harvest for installing patches was a mistake. CCC/Harvest is an excellent configuration
management tool that was misapplied as a patch management tool. Its use resulted in insufficient information
about the successful installation of the necessary security patch in the production environment. This was
not a technological failure but rather a human failure due to the misapplication of a technology. After the
Slammer worm attack occurred, the company implemented Microsoft’s Systems Management Server for
patch management, and subsequent patch-related security problems have not occurred.

• Never make assumptions about the synchronization of different environments. Given the complexity of
most enterprise architectures, subtle differences may have significant security implications.

• Deploying a security patch once may not be sufficient to eliminate a vulnerability. Installation logs
should be checked rigorously after deployment, and thorough testing should be performed on each
environment where a patch is installed. Regular scanning to identify the recurrence of vulnerabilities is
equally important.

Because patch management is designed to give an organization control over the software updates it deploys,
any organization planning to patch its operational environment should have

• Effective operations, including people who understand their roles and responsibilities.

• Tools and technologies that are appropriate for effective patch management.

• Effective project management of patch management processes.

References

[Microsoft 2003] "Buffer Overruns in SQL Server 2000 Resolution
Service Could Enable Code Execution." Microsoft

Security Bulletin MS02-03967 (2003).

http://www.microsoft.com/technet/security/bulletin/ms02-039.mspx

Assembly and Integration Case Study: Enterprise Patch Management 5
ID: 206-BSI | Version: 5 | Date: 11/14/08 9:17:27 AM

[Microsoft 2007] "Standardizing the Patch Experience68." Microsoft
TechNet, 2007.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://www.microsoft.com/technet/security/guidance/patchmanagement/stdpatex.mspx
mailto:copyright@cigital.com

